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A novel model order reduction method for efficient analysis of eddy current problems is proposed in which the electromagnetic 

fields are decomposed into a sequence of electric and magnetic field modes and the field equation is represented by the Cauer ladder 

network. The modes are calculated sequentially by electric and magnetic computations using the conventional finite element method. 

The network equation is applicable in a wide frequency range and can be solved in frequency as well as in time domains with minimum 

computational loads. In this digest, the formulation of the method and a numerical test application are presented. 

 
Index Terms— Cauer ladder network, eddy current, finite element method, model order reduction. 

 

I. INTRODUCTION 

ODEL order reduction (MOR) methods have been 

recently gaining ground in the area of electromagnetic 

field analysis arising in the design of electric machines and 

electromagnetic devices. They offer the potential to drastically 

reduce the unacceptable computation loads that the finite 

element method (FEM) entails [1]. The MOR methods are also 

important in homogenization methods for electromagnetic fine 

structures. This paper proposes a novel and effective MOR 

method in which the linear eddy current fields are represented 

by the Cauer ladder network (CLN).  

We have been investigating the equivalent circuit 

representation approaches using the CLN in the 

homogenization of laminated magnetic sheets [2], [3]. By the 

homogenization method, more effective and accurate 

computations would become possible in the analysis of 

electric machines with laminated iron cores. It has been shown 

that wide frequency ranges are covered by minimum circuit 

elements by the CLN representation. The frequency range is 

determined specifically and can be extended by adding 

elements hierarchically. This approach was also applied to the 

electromagnetic field analysis in cylinders and spheres [4]. 

The CLN representation was noted to be quite general in the 

realm of eddy current field. Using the CLN, this paper realizes 

a simple MOR method that can reconstruct the eddy current 

field far more efficiently than the conventional FEM method.  

II. REPRESENTATION OF CAUER LADDER NETWORK 

We consider an analysis domain governed by Maxwell's 

equations of eddy current fields as shown in Fig. 1. The 

domain includes magnetic and conductive materials, where the 

permeability [H/m] and the conductivity  [S/m] are 

constant in time. A power supply with single output energizes 

the domain driving voltage v [V] and current i [A].  

The eddy current fields are generally characterized by 

impedance Z(s) in the frequency domain where js . The 

impedance, being a rational function, can be expressed as a 

continued fraction using the Euclidean algorithm as follows: 
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The impedance can be realized by the CLN shown in Fig. 2, 

from the continued fraction of (1). This suggests that the field 

equations in the analysis domain is equivalent to the equations 

of the network. The network is characterized by resistances 

(R0, R2, R4,…) [] and inductances (L1, L3, L5,…) [H]. The 

voltages across the resistors and currents through the inductors 

are represented by e2n [V] and h2n+1 [A], respectively. The 

infinite sequence of the resistors and inductors can be 

truncated for a desired accuracy, with the terminating element 

being R2N (resistive termination) or L2N+1 (inductive 

termination), where N is the number of stages of the CLN [3]. 

 
Fig. 1. Analysis domain and power supply. 

 

Fig. 2. The Cauer ladder network. 

In the ladder network, we notice that there are no couplings 

between resistors and between inductors. This suggests that 

the electric and magnetic fields (E [V/m] and H [A/m]) can be 

expanded by orthogonal basis E2n [m
1

] (electric basis 

functions) and H2n+1 [m
1

] (magnetic basis functions), 

respectively, corresponding to e2n and h2n+1 as follows: 
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where δnm denotes Kronecker's delta. 

The basis functions are recursively related so that the 

network equations of the CLN are derived as follows: 

,)( 221212 nnnn R EHH    (5) 

,)/1()( 1212222   nnnn L HEE   (6) 

where H-1  0 and E0 is the electric field created by unit 

voltage (1 V) of the power supply. 

Substituting (2) in Maxwell's equations, 

,EH   and  ,j HE   (7) 

and using the orthogonalities (3), (4) and the recursive 

relations (5), (6), one arrives at the following Kirchhoff's 

current and voltage laws to the CLN: 

,)/()/(,/ 1222222200   nnnnn hReReiRe  (8) 

.)(j,j 212121212011 nnnnn ehLhLvehL    (9) 

The procedure of the proposed method is summarized as 

follows:   

Step 0: Initially solve electric field E0 under a given voltage 

condition. Calculate R0 by (3). 

For n  1, 2, 3,…,N, do Step 1 and 2 recursively. 

Step 1: Solve magnetic field by 

,
~

22212   nnn R EH   (10) 

and set H2n-1  H2n-3  H 2n-1. Calculate L2n-1 by (4). 

Step 2: Solve electric field by 

,)/1(
~

12122  nnn L HE   (11) 

and set E2n  E2n-2  E 2n. Calculate R2n by (3). 

Step 3: Solve the network in frequency or time domain using 

(8) and (9). 

Step 4: Reconstruct electric and magnetic fields using (2) and 

calculate quantities like Joule loss and others. 

In solving the electric (Step 0 and 2) and magnetic fields 

(Step 1), the divergence conditions of Maxwell's equations 

and appropriate boundary conditions are applied and unique 

solutions are obtained. The electric fields are solved only in 

conductive regions and undetermined in the non-conductive 

regions. Thus, the eddy-current field is decomposed into 

electric and magnetic field components yielded by a usual 

finite-element static-field solver. 

III. NUMERICAL APPLICATION USING FEM 

The proposed method is applied to a pair of cylindrical 

conductors arranged in parallel, such that the conductors carry 

equal currents but in opposite directions. The diameter of the 

conductors is 0.85mm, and the distance between the axes of 

the conductors is 0.95mm. The conductivity of the conductors 

is 5.8×10
7
 S/m, while the permeability is equal to that of the 

air. The problem is solved by two-dimensional analysis. The 

analysis domain is a circular region with 2.0 mm diameter, 

where Dirichlet boundary condition for the magnetic vector 

potential  is prescribed on the outer boundary. 

The CLN of inductive termination is applied where 

numbers of the stages N are 2 to 5. Fig.3 shows the 

distributions of current density J2n =  E2n in the conductors, 

and the distributions of flux density B2n+1 = H2n+1 in the 

entire domain related to corresponding resistors and inductors. 

The impedance of the CLN derived by the proposed method is 

shown in Fig. 4, together with the result by the conventional 

FEM. Even the CLN with three stages provides accurate 

results up to 1 MHz within an error of 1%. Its computation 

cost is only for three static magnetic field analyses, whereas 

the conventional FEM requires complex matrix inversions at 

all the frequencies of interest. 

 

 
 

Fig. 3. Electric and magnetic field modes related with CLN. 

 

Fig. 4. The impedance of the conductors, (a) inductance and (b) resistance 

plotted by solid lines, and the differences between the proposed method and 

the conventional FEM analysis plotted by dashed lines. 
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